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Abstract 

We prove an occurrence property about formal parameters of continuations in Continuation-Passing 
Style (CPS) terms that have been automatically produced by CPS transformation of pure, call-by- 
value A-terms. Essentially, parameters of continuations obey a stack-like discipline. 
This property was introduced, but not formally proven, in an earlier work on the Direct-Style 
transformation (the inverse of the CPS transformation). The proof has been implemented in Elf, 
a constraint logic programming language based on the logical framework LF. In fact, it was the 
implementation that inspired the proof. Thus this note also presents a case study of machine- 
assisted proof discovery. 
All the programs are available in 

J ftp.daimi.aau.dk:pub/danvy/Programs/danvy-pfenning-Elf93.tar.gz 
I   ftp.es.emu.edu:user/fp/papers/cpsocc95.tar.gz 
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1    Introduction 

Continuation-Passing Style (CPS) A-terms encode both evaluation order and sequencing order [13]. 

For example, consider the Direct Style (DS) A-term 

Xx.fx(gx). 

Evaluating it from left to right under call-by-value (CBV) amounts 

1. to evaluate f x — call the result Ui, 

2. to evaluate gx — call the result V2, and 

3. to apply vi to v^ — call the result v%. 

CBV, left-to-right CPS transformation of this term yields 

Xk.k (Xx.Xk.f x Xvi.g x \v2-vi vi Xv3.kv3). 

On the other hand, evaluating the DS A-term above from right to left under CBV amounts 

1. to evaluate gx — call the result V2, 

2. to evaluate f x — call the result v\, and 

3. to apply vi to V2 — call the result 173. 

CBV, right-to-left CPS transformation of this A term yields 

Xk.k (Xx.Xk.gx Xv2-f x Xvi.vi V2 Xv3.kv3). 

In earlier work, the first author developed a textual inverse of the CPS transformation, i.e., 

a "direct-style transformation" [2]. To this end, it was necessary to characterize CPS terms that 

correspond to the output of Plotkin's CPS transformation, after administrative reductions [3, 16]. 

However this characterization was not formally proven. The goal of this note is to prove it. 

The proof has been implemented in Elf [10], a constraint logic programming language based 

on the logical framework LF [5]. In fact, it was the implementation that inspired the proof. 

LF turned out to be particularly suited for this problem, since two-level A-terms and the CPS 

transformation can be encoded very naturally by using meta-level abstraction and application to 

model administrative reductions. This note thus also presents an excellent, albeit small, case study 

of machine-assisted proof discovery. 
The rest of this note is organized as follows. Section 2 presents our starting point: the left-to- 

right CBV CPS transformation. We formulate it both as a function and as a judgment. Section 

3 describes properties of CPS terms as produced by this CPS transformation: their BNF and the 

ordering of formal parameters of continuations. In Section 4, we prove that the output of the CPS 

transformation satisfies the ordering. Section 5 describes the implementation of the proof in Elf. 

Following a comparison with related work in Section 7, Section 8 concludes. 



2    The CPS Transformation 

The BNF of the pure A-calculus reads as follows. We refer to this A-calculus as direct style (DS) to 

distinguish it from the continuation-passing style (CPS) calculus introduced later. 

r G DRoot — DS terms r ::= e 

e € DExp — DS expressions e ::= e0ei  \ t 

t € DTriv — DS trivial expressions t ::= x \ Xx.r 

x e Ide — identifiers 

Figure 1 displays a one-pass CPS transformer for the pure call-by-value A-calculus. This transformer 

is an optimized version of Plotkin's CPS transformer [13], derived in an earlier work [3]; it is slightly 

rephrased to match the syntactic domains. 
These equations can be read as a two-level specification ä la Nielson and Nielson [8]. Opera- 

tionally, 

• for any variable x and any expressions e, e0, and eu [x]e and e0(ci) respectively correspond to 

functional abstractions and applications in the translation program (and define the so-called 

"administrative reductions"), and 

• for any variable x and any expressions e, e0, and eu Xx.e and e0ei respectively represent 

abstract-syntax constructors (to build the residual program). 

Note that the types of the translations and continuations are meta-level types: The object calculus 

is untyped. We revisit these types in Section 5.2. 
The CPS transformation can be reformulated with three judgments. A DS term r is transformed 

into a CPS term r' whenever the judgment 

,       DRoot   / [_ r     y    r 

is satisfied.   Given a continuation K, a DS expression e is transformed into a CPS expression e' 

whenever the judgment 
DExp   , 

r e ; n —> e 

is satisfied. Finally, a DS trivial expression t is transformed into a CPS trivial expression *' whenever 

the judgment 
h t D-Hv t' 

is satisfied. The overall transformation is displayed in Figure 2. 
NB: In the inference rule for applications, *0 is "new", i.e., the deduction of the left premise 

is parametric in t0. This means that we can substitute an arbitrary trivial term t for tQ in this 

derivation and obtain a derivation of h ex ; [h]th XV.K(V) °A
P
 e'^t). This property is exploited 

crucially in the proof of Section 4. 



cDRoot      .     DRoot ^ CRoot 

cDRoot|ej    =    xk.CDExp[e]([t]kt) 

QDExp 

CDExp[eoei]K 

CDExp[i] K 

DExp -»■ [CTriv -> CExp] -> CExp 

CDExp[e0] ([io]CDExp[ei] ([«i]toti AU.K(ü))) 

K(cDTrivM) 

cDTriv      .      DTriv  ^  CTriv 

CDTriv[z]   =   x 

CDTriv[Az.r]   =   Ax.CDRoot[r] 

where k and the u's are fresh variables. 

Figure 1: The left-to-right, call-by-value CPS transformation formulated as a function 

F-e;[t]fctD-g3V 
h c 

D«£?* A/t.e' 

DExp   , 
h ei ; [ti]t0*i AU.K(U) —► e'^p) h e0 ; fole'^p) 

DExp   , 

DExp   , 
r ep ej ; /e —>• e' 

,        DTriv 
r x —»• a; 

.       DRoot   » |_ r    ^   r' 

I- Xx.r —H>v Xx.r' 

h t D-^iv f' 

Figure 2: The left-to-right, call-by-value CPS transformation formulated as a judgment 



3    CPS Terms 

We first specify the BNF of CPS terms as produced by the CPS transformation of Figures 1 and 2, 

and then we specify the occurrence conditions over the continuations and their formal parameters. 

Both specifications come from the earlier work on the DS transformation [2]. 

3.1 BNF of CPS terms 

The BNF of CPS terms reads as follows. (NB: We distinguish between the original identifiers x 

coming from the DS term, and the fresh identifiers v and A; introduced by C.) 

r G CRoot — CPS terms r ::= Xk.e 

e G CExp — CPS (serious) expressions e ::= Mi Xv.e | kt 

t G CTriv — CPS trivial expressions t ::= x \ Xx.r \ v 

x G Ide — source identifiers 

v G Var — fresh parameters of continuations 

k G Cont — fresh variables denoting continuations 

3.2 Occurrences of continuation parameters 

The occurrence conditions over continuation parameters is simple: there is only one continuation 

at any point of a CPS term. This is captured in Figure 3 and proven in Appendix A. 

CPS terms that do not satisfy the occurrence conditions over continuation parameters corre- 

spond to DS terms that use a control operator such as call/cc. This point is investigated elsewhere 

[4, 6]. 

3.3 Occurrences of formal parameters of continuations 

The occurrence conditions over the formal parameters of continuations are reproduced in Figure 4. 

This figure should be read as follows. Given a CPS expression e occurring in the scope of formal 

parameters of continuations listed in the order of their declaration in a list £, the judgment 

S rVar     e 

is satisfied whenever the variables listed in £ and all the other formal parameters of continuations 

declared in e occur in a left-to-right fashion in e. (NB: • denotes the empty list.) 
Similarly, given a trivial term t occurring in the scope of formal parameters of continuations 

listed in the order of declaration in £, the judgment 

e iCTriv t .  d 

is satisfied whenever £' is a prefix of £ and the remaining variables off occur in t in a left-to-right 

fashion. 
Our goal here is to prove that transforming a DS term r with C (in Figures 1 and 2) yields a 

CPS term that satisfies the judgment 
h$*°ot C[r]. 



hg*-' Xk.e 

i_CTriv 4. 
hCont    *1 

i_CTriv J. 
^Cont   Z0 k\- CExp 

Cont 

k^tohXv.e 
K CTriv 

Cont 

£• I-' A. r, 
CExp 
Cont kt 

L_CTriv 
'Cont 

i_CRoot „ 
rCont     r 

•"SS* A*.r |_CTi 
Cont 

Figure 3: Occurrences of continuation parameters in a CPS term 

• hCExp e * rVar     e 

!-v£°ot xk-e 

g ^aT *1 i ft ft ^aT *0 ? 6> 6), * ^aT e 

i_CRoot „ 
^Var       r 

f ^iv*; € 
£HCTrivAa..r.£ ft W hCJ»v „ ; £ 

Figure 4: Ordering over formal parameters of continuations in a CPS term 



NB: There is nothing wrong with CPS terms that do not satisfy the judgments of Figure 4. 

Simply, they specify another evaluation order or another sequencing order than the one captured 

in the CPS transformation of Figures 1 and 2. Therefore, they cannot be mapped back to direct 

style naively [2, 7]. 

4    The Proof 

Globally, we are interested in proving that if h r D-^ot r' then h^ot r'. Clearly, we cannot 

prove this inductively by itself since properties at the root of a term are defined in terms of the 

expressions it contains. The critical issue is the property of continuations we must prove (in the 

inductive conclusion) and require (in the inductive hypothesis) for the translation of expressions 

under a continuation. A continuation is a (meta-level) function from trivial terms to expressions, 

which suggests the method of logical relations [17]. The idea behind binary logical relations is to 

consider two functions related if they map related arguments to related results. In unary form: A 

function is valid if it maps valid arguments to valid results. This kind of definition is pervasive 

in the application of logical frameworks to meta-theoretic reasoning (e.g., [9]). It works smoothly 

here. 
Four notions of validity arise: for root terms, for trivial expressions, for serious expressions, and 

for continuations. In their definitions, we must account for the context £ in which an expression 

might occur. For root terms, serious expressions, and trivial expressions, the notion of validity 

is derived directly from the property we are trying to prove; for continuations it arises from the 

considerations of logical relations as motivated above. We also streamline the definitions by con- 

sidering separately the case of a trivial variable v, since such a variable is never the result of the 

translation of a trivial DS term (see Theorem 1 (3)). 

Definition 1 

(1) r' is valid if\-^otr'. 

(2) c'we-vaiid if£^Pe>. 

(3) f is valid if£ r-$™v t' ; <£ for every f. 

(4) K is £-valid if 

(a) £, v K£xp K(V), and 

(b) £ h$fr
xp «(*'), for anV valid f. 

This definition is more complex than it may appear at first, since it involves meta-level appli- 

cations K(V) and «(*') and therefore, implicitly, substitution. 

Theorem 1 

(1) Ifhr D-^f r' then r' is valid. 



(2) If K is £-valid and h e ; K —*£ e' then e' is £-valid. 

(3) Ifh t ^T t' then t' is valid. 

Proof: By mutual induction on the derivations TZ, £, and T of I- r  —^ r', h e ; K —> e', and 

h t —™ t', respectively. 

Case n - ^;WtD-^e> 

Then « = [t] kt is «-valid: 

(a) *' V h^r'V v ' * holds, and 

# |_CTriv fi . 

(b) 3W J^  for any valid l'- 
Hence, by induction hypothesis (2) on £, • h^*p e', and thus h$*oot Xk.e'. 

£i {to) £o 
h ei ; fal tpt! A».*(t;) °-^P e', fa)        h e0 ; ftp] e', fa) °-^P e' 

t^ase c DExp   , 
I- eo ei ; K —> e 

Assume K is £-valid. We need to show that K0 = [t0] eifa) is £-valid, since then £ l-Var
XP e' bv 

induction hypothesis (2) on £0. Thus we need to show properties (a) and (b) for K0. 

£I(UO) 

(a) We need £, u0 l~VarXP Ko(uo)- Consider I- e2 ; [*i] u0ti AU.K(U) 
I
^HP ei(üo). We would like 

to show that 

«l = [*i] voty XV.K(V) 

is f, uo-valid, since then e'^Uo) = «o(uo) is £, Uo-valid by induction hypothesis (2) on 

£i(v0). Therefore we need to consider the two cases of Definition 1(4). 

(a) £, v0, vi l~varXP «i(ui)- We derive this as follows: 

since K is £-valid 
  t-       iCExp     i   \ 

S,vo,vi^rvi;TVo     U^^;€      ^    Var  KW 

£, «o, «i ^varXPuoUiAu.«;(u) 

(b) £, u0 ^vl^ K(fi)' wnere *i is valid. This is established by the derivation 

since t[ is valid since K is £-valid 
f, «o h^iv , . ^ Uo CTriv      . £, t, H^ *(«) 

$,V0,V1rf%PV0t1\v.K(V) 

Thus Ki is £, t»o-valid. Therefore, by induction hypothesis on £i(uo), 

e,W0^VaXP«0K). 



(b) We need £ h^r
xp K0{t'0) for any valid t'0. Consider 

Wo) DE 

We would like to show that 

«l = [ti]t'0ti XV.K(V) 

is £-valid, so we can apply the induction hypothesis to £x (t'0). Again, we need to consider 

the two clauses of Definition 1(4). 

(a) £, ui h$Jxp /ci(ui). We derive this as follows: 

since t'0 is valid        since K is £-valid 

£, ü! r-$™v t>i ; £ 

e,«1^v«P*o"i^./e(t;) 

(b)   £ !~VarXP Kl(*l) for aRy Valid *1- We COnstrUct: 

since i'x is valid        since t'0 is valid        since K is £-valid 

g l-SE* f, ; g e H^"v ft ; £ 6 i> HS? «(t>) 
^VarXP^0*iA^W 

Hence «i is £-valid and thus £ h^xp   e'^Q   by induction hypothesis (2) on £i{t'0). 

= «o(*o) 

Thus K0 is £-valid. Hence e' is valid by induction hypothesis (2) on £0- 

T 
,       DTriv   , 

Case £ =       ht ^ *  
ht;/AP

K(f') 
By induction hypothesis (3) on T, £' is valid. Since we assume that K is £-valid, K(?) is also 

£-valid by clause (b) in Definition 1. 

Case T = nqv.„    • Then ,   Chiv _ m c is an axiom for any f. DTriv     " <r i_0 Inv      .   <r 
|- x "lily x ? r-Var     X ' S 

jl by i.h. (1) on TZ 
DRoot    , 

h Ax.r —> Xx.r 

,       DRoot   , |_CRoot ri 

Case T = ,   .oil!'     r Then we construct ^cfJXxy.^ 
\- A-r r    ^   A.T.r s     Var '  "» 

D 

5    Implementation in Elf 

In this section we show the implementations of the DS and CPS terms, CPS transformation, 

ordering, and the proof that the results of the CPS transformation are valid. Familiarity with the 

LF logical framework [5], its methodology, and it implementation in Elf [10] is assumed. Some 

implementation-specific details will be mentioned in the commentary. 



5.1     Direct-style terms 

Recall the information definition of direct-style (DS) terms in BNF form. 

DS (Root) Terms r 
DS (Serious) Expressions e 

DS Trivial Expressions t 

=   e 
=   e0ei | t 
=   x I Xx.r 

We only remark that the representation uses higher-order abstract syntax [11] to represent object- 

level abstractions, and that the natural inclusions (e.g., every trivial expression is an expression) 

are modeled by explicit coercions (e.g., dtriv_dexp). 

droot   :   type,  '/.name droot R 
dexp     :   type,  '/.name dexp E 
dtriv  :   type,   '/.name dtriv T 

dexp_droot 
dapp 
dtriv_dexp 
dlam 

dexp -> droot. 
dexp -> dexp -> dexp. 
dtriv -> dexp. 
(dtriv -> droot) -> dtriv. 

Note that dlam abstracts over an argument of type dtriv, thus encoding the fact that variables 

x are trivial expressions. The '/.name declarations indicate preferred variable names for syntactic 

classes, in case the Elf interpreter has to synthesize names (which is a frequent occurrence in during 

type reconstruction). 

5.2    CPS terms 

Recall the definition of continuation-passing style (CPS) terms in BNF form. 

CPS (Root) Terms r 
CPS (Serious) Expressions e 

CPS Trivial Expressions t 

CPS terms are modelled using the same principles as DS terms, but they introduce a new con- 

sideration. The two-level CPS transformation from Section 2 shows that a continuation is best 

considered as a meta-level function which, when applied to a trival term, yields an expression. It 

therefore has type ctriv -> cexp. An abstraction over a continuation (as is necessary for a root 

term Xk.e) thus is a third-order construct! This is rare and indicates that we are exploiting the 

expressive power of the meta-language to a great extent. 

croot   :   type,  '/.name croot R 
cexp     :  type,   '/.name cexp E 
ctriv  :   type,  '/name ctriv T 
'/. ccont  :  type = ctriv -> cexp.  y.name ccont K 

=    Xk.e 
=   eo e\ Xv.e | kt 
=   x I Xx.r I v 

rlam 
capp 
clam 

((ctriv -> cexp)  -> cexp)  -> croot. 
ctriv -> ctriv ->  (ctriv -> cexp)  -> cexp. 
(ctriv -> croot)  -> ctriv. 

Note that Elf currently does not support definitions, so we must write the expanded version of 

the continuation type ccont by hand. It is inserted in the source only as a comment. 

10 



5.3    The CPS transformation 

The judgments in Figure 2 can be easily transcribed into Elf. Just like the inference rules them- 

selves, the corresponding declarations below should be understood schematically—the free variables 

are implicitly quantified. Elf's type reconstruction determines the most general type for the free 

variables in each declaration. 
Instead of d : A -> (B -> C) we often use the form d : C <- B <- A to emphasize the op- 

erational interpretation of the declarations as a logic program (to solve C first solve B then A). In 

this case, the logic program transforms DS terms to CPS terms. The '/.mode pragmas establish 

the role of input (+) and output (-) arguments to a predicate. They are checked for consistency, 

thus providing operational correctness guarantees beyond type correctness. The '/.lex annotation 

postulates a termination ordering on the given arguments and modes which is checked by Elf. In 

this case we simply use the subterm ordering on the first argument of the three mutually recursive 

judgments. 

cst_r : droot -> croot -> type. '/.name cst_r CR 

cst_e : dexp -> (ctriv -> cexp) -> cexp -> type. '/.name cst_e CE 

cst_t : dtriv -> ctriv -> type. '/.name cst_t CT 

'/jnode -cst_r +R -R' 
'/.mode -cst_e +E +K -E' 

'/.mode -cst_t +T -T' 

'/.lex {R E T} 

cst_r_dexp :   cst_r (dexp_droot E)   (rlam E') 
<-  (-Ck: ctriv -> cexp} cst_e E k (E'  k)). 

cst_e_dapp : 
cst_e  (dapp EO El)  K E' 

<-  ({tO:ctriv} cst_e El  ([tl:ctriv]   capp tO tl K)   (El'  tO)) 
<- cst_e EO  ([tO:ctriv]  El'  tO)  E'. 

cst_e_dtriv  :   cst_e  (dtriv_dexp T) K  (K T') 
<- cst_t II1. 

cst_t_dlam :   cst_t   (dlam R)   (clam R') 
<-  ({x:dtriv} -Cx':ctriv} cst_t x x'  -> cst_r (R x)   (R'  x')). 

The left premise of the rule for applications e0e'i is required to be parametric in t0.   This is 

represented by a dependently typed function from t0 to a derivation of 

h ei ; [*i]*o*i AU.K(U) -4
P
 ei(i0)- 

In Elf's concrete syntax this type is written as 

{tO:ctriv} cst_e El  ([tl:ctriv]  capp tO tl K)   (El' tO) 

Note that we have silently ^-reduced XV.K(V) and simply written K. This is a matter of style and 

efficiency, but not essential, since the definitional equality of the Elf meta-language is /^-conversion. 

11 



5.4     Ordering over parameters of continuations 

In order to describe the ordering over parameters of continuations, we require a notion of stack 

which is easily defined. The '/infix declaration makes ',' a left-associative infix operator with an 

(arbitrary) binding strength of 10. 

stack  :   type,   y.name stack Xi 
dot   :   stack. 
,       :   stack -> ctriv -> stack,    '/.infix left  10  , 

The three mutually recursive judgments regarding variable ordering are easily translated into 

Elf. Note that the cases concerning variables x, v and k must be given wherever such variables 

are introduced, rather than globally. This is a consequence of the representation technique of 

higher-order abstract syntax. 

ord_r croot -> type. y.name ord_r OR 

ord_e stack -> cexp -> type. '/.name ord_e OE 

ord_t stack -> ctriv -> stack -> type. '/.name ord_t OT 

'/.mode -ord_r +R 
'/.mode -ord_e +Xi +E 
'/.mode -ord_t +Xi'  +T -Xi" 
'/.lex -CR E T} 

ord_r_rlam : ord_r (rlam E) 
<- ({k:ctriv -> cexp} 

({Xi:stack} {T:ctriv} 
ord_e Xi  (k T)  <- ord_t Xi T dot) 

-> ord_e dot  (E k)). 

ord_e_capp  :   ord_e Xi  (capp TO Ti E) 
<- ord_t Xi Tl Xil 
<- ord_t Xil TO XiO 
<-  ({v:ctriv} 

({Xi':stack} ord_t  (Xi'   ,  v)  v Xi') 
-> ord_e  (XiO   ,  v)   (E v)). 

ord_t_clam :   ({Xi:stack} ord_t Xi   (clam R)  Xi) 
<- ({x:ctriv} 

({Xi':stack} ord_t Xi'  x Xi') 
-> ord_r  (R x)). 

5.5     The proof 

The informal proof in Section 4 that continuation parameters obey a stack-like discipline can be 

translated into Elf using the technique of higher-level judgments (see, for example, [12]). Our 

(constructive) proof may be seen as containing an algorithm for computing a derivation 71' of 

h^°ot r' from a derivation 71 of h r D-^»t r'. In Elf, this algorithm is implemented as a logic 

program for transforming 71 into 71'; declaratively it is a higher-level judgment relating derivations 

71 and TV. Properties of these higher-level judgments such as termination can then be established 

automatically. 

12 



In order to match the definition of the CPS transformation closely, our formalization does not 

use explicit definitions of validity except for continuations K, which would otherwise be unwieldy. 

valid.k :   stack ->  (ctriv -> cexp) -> type. 

'/.mode -valid_k +Xi +K 
'/.lex K 

vld_k : valid_k Xi K 
<- ({v:ctriv} 

({Xi':stack} ord_t (Xi' , v) v Xi') 
-> ord_e (Xi , v) (K v)) 

<- ({f : ctriv} 
({Xi:stack} ord_t Xi t' Xi) 
-> ord_e Xi (K t')). 

The proof is implemented by three mutually recursive higher-level judgments for root terms, 

expressions, and trivial expressions. Each clause corresponds to one case of the informal proof. 

Each appeal to an induction hypothesis appears as a recursive call. 

proof_r :   cst_r RE'  -> ord_r R'  -> type. 
proof_e  :   cst_e EKE'  -> valid.k Xi K -> ord_e Xi E'  -> type. 
proof_t  :   cst_t IT'->  ({Xi:stack} ord_t Xi T'  Xi) -> type. 

'/.mode -proof _r +CR -OR 
'/.mode -proof _e +CE +VK -0E 
•/.mode -proof _t +CT -0T 
'/.lex {CR CE CT} 

pf_r  :  proof.r  (cst_r_dexp CE)   (ord_r_rlam OE) 
<-  ({k:ctriv -> cexp} 

{ok  :   {Xi:stack} {T:ctriv} ord_e Xi  (k T)  <- ord_t Xi T dot} 
proof_e (CE k) 
(vld_k 

([f: ctriv] [CT:{Xi: stack} ord_t Xi t' Xi] 
ok dot t' (CT dot)) 

(Cv:ctriv] [CT:{Xi':stack} ord_t (Xi' , v) v Xi'] 
ok (dot , v) v (CT dot))) 

(OE k ok)). 

pf e_dapp : proof_e (cst_e_dapp CEO CE1) (vld_k _ OE) OE' 
<- ({vO : ctriv} {0T0 : {Xi':stack} ord_t (Xi' , vO) vO Xi'} 

proof_e (CE1 vO) 
(vld_k 

([tl:ctriv] [0Ti:{Xi':stack} ord_t Xi' tl Xi'] 
ord_e_capp OE (0T0 Xi) (0T1 (Xi , vO))) 

([vi:ctriv] [0Tl:{Xi':stack} ord_t (Xi' , vl) vl Xi'] 
ord_e_capp OE (0T0 Xi) (0T1 (Xi , vO)))) 

(VEl'V vO 0T0)) 
<- ({tO : ctriv} {0T0 : {Xi':stack} ord_t Xi' tO Xi'} 

proof_e (CE1 tO) 
(vld_k 

([tl:ctriv] [0Tl:{Xi':stack} ord_t Xi' tl Xi'] 
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ord_e_capp OE  (OTO Xi)   (OTi Xi)) 
([vl:ctriv]   [OTI:{Xi':stack} ord_t  (Xi'   ,  vl)  vl Xi'] 

ord_e_capp OE  (OTO Xi)   (OTi Xi))) 
(VEl'T tO OTO)) 

<- proof_e CEO  (vld_k VEl'T VEl'V)  OE'. 

pf_e_dtriv  :   proof_e  (cst_e_dtriv CT)   (vld_k OE _)   (OE T'   OT) 
<- proof_t CT OT. 

pf_t_dlam  :  proof_t  (cst_t_dlam CR)   (ord_t_clam OR) 
<-  ({x:dtriv} {x':ctriv} 

{CT:   cst_t x x'> 
{0T:{Xi':stack} ord_t Xi'  x'   Xi'} 
proof.t CT OT 
-> proof_r (CR x x'   CT)   (OR x'  OT)). 

From the implementation above it is actually quite easy (with a little experience) to reconstruct 

the informal proof. 
The proof of the property of occurrences of continuations k themselves (see Figure 3) can also 

easily be represented in the same style. It can be found in Appendix A. 

5.6     An example 

We now reconsider the direct-style term from Section 1. 

Xx.fx(gx) 

Under appropriate declarations for / and g as variables, this term is represented in Elf by 

(dexp_droot 

(dtriv_dexp 
(dlam  [x:dtriv] 

dexp_droot (dapp  (dapp  (dtriv_dexp f)   (dtriv_dexp x)) 
(dapp  (dtriv_dexp g)   (dtriv_dexp x)))))) 

:   droot. 

It is rather lengthy due to the coercions, but we could easily write a judgment to insert appropriate 

coercions into pure A-term. In order to translate this we may pose the following query. 

CR: 
cst_r (dexp_droot 

(dtriv_dexp 
(dlam  [x:dtriv] 

dexp.droot  (dapp  (dapp  (dtriv.dexp f)   (dtriv_dexp x)) 
(dapp  (dtriv_dexp g)   (dtriv_dexp x)))))) 

R. 

which yields the CPS term R (eliding the derivation CR) 

R = 
rlam  [k:ctriv -> cexp] 

k  (clam  [x':ctriv]  rlam  [kl:ctriv ->  cexp] 
capp f  x'   ([t01:ctriv]  capp g'   x'   ([ti:ctriv]  capp tOi tl kl))), 

CR =   ... 
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Modulo variable names, this corresponds to 

Xk.k (Xx.Xk.fx Xvi.gx Xv2.v\ v2 Xv3.k v3). 

The omitted term CR represents the derivation of the judgment 

\- Xx.fx{gx) D^ Xk.k (Xx.Xk.f x Xvi.gx Xv2.v1v2 Xv3.k v3) 

which was constructed by the Elf interpreter in answer to the first query. We can apply the 

implementation of the meta-theory to translate CR into a derivation showing that the conditions on 

occurrences of continuation parameters are satisfied in this example, that is, into a derivation of 

hvS°ot Xk.k (Xx.Xk.fx Xvi.g x Au2.ui v2 Xv3.kv3). 

The query is the following. The first argument to proof _r is the derivation CR elided above. 

proof_r 
(cst_r_dexp [k:ctriv -> cexp] 

cst_e_dtriv 
(cst_t_dlam  [x:dtriv]   [x'l:ctriv]   [CT:cst_t x x'l] 

cst_r_dexp  [kl:ctriv -> cexp] 
cst_e_dapp 

(cst_e_dapp (cst_e_dtriv cst_f)   ([tO:ctriv]   cst_e_dtriv CT)) 
([tO:ctriv] 

cst_e_dapp (cst_e_dtriv cst_g)  ([t01:ctriv]  cst_e_dtriv CT)))) 

OR. 

We know that a query of this form will always succeed. In this case it produces the substitution 

OR = 
ord_r_rlam  [k:ctriv -> cexp] 

[ok:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi  (k T)] 
ok dot 

(clam  [x':ctriv]  rlam  [kl:ctriv ->  cexp] 
capp f  x'   ([tO:ctriv]  capp g'  x'   ([tl:ctriv]  capp to ti kl))) 

(ord_t_clam 
([x'l:ctriv]   [0T:{Xi>:stack} ord_t Xi'  x'l Xi'] 

ord_r_rlam [kl:ctriv -> cexp] 
[okl:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi  (kl T)] 
ord_e_capp 

(CvO:ctriv]   [0T01:{Xi':stack} ord_t  (Xi'   ,  vO)  vO Xi'] 
ord_e_capp 

([vl:ctriv]   [0T1:{Xi':stack} ord_t  (Xi*   ,  vl)  vl Xi'] 
ord_e_capp 

([v:ctriv] 
[CT:{Xi>:stack} ord_t  (Xi'   ,  v)  v Xi'] 
okl  (dot   ,  v)  v  (CT dot)) 

(0T01 dot)   (0T1   (dot   ,   vO))) 
(ord_t_g (dot   ,  vO))   (OT  (dot   ,  vO))) 

(ord_t_f dot)   (OT dot)) 
dot). 

which shows that the CPS term above satisfies the ordering criterion. 
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-T^CRoot CRoot -► DRoot 

£>CRoot[Afc.e] = PCExp[e] 

-rjCExp CExp -> DExp 

V^ltohXv.ej = £>CExp[e] [v := PCTriv[i0] £>CTrivM] 

VCExplktj = 
pCTriv^j 

-TjCTriv CTriv -» DExp 

Vcr"v[xJ = X 

X>CTriv[Az.r] = Xx.VCRootlrJ 

VCTTiv{vJ = V 

Figure 5: The call-by-value DS transformation formulated as a function and using substitutions 

6    The Direct-Style Transformation 

Having formalized and proven the occurrences of continuation parameters in CPS terms, we can 

now show the transformation from a CPS term back to direct style. Note that this transformation 

only applies to terms satisfying occurrence and ordering conditions. 

The following implementation uses substitution (see Figure 5). An implementation that uses a 

stack £ without explicitly relying on substitution is also possible (see Figures 6 and 7). 

dst_r  :   croot -> droot -> type. 
dst_e  :   cexp -> dexp -> type. 
dst_t   :   ctriv -> dexp -> type. 

'/.mode -dst_r +R -R' 
'/.mode -dst_e +E -E' 
'/.mode -dst_t +T -T' 
'/.lex {R E T} 

dst_r_rlam : dst_r (rlam E) (dexp_droot E') 
<- ({k:ctriv -> cexp} 

({T:ctriv} {E:dexp} dst_e (k T) E <- dst_t T E) 
-> dst_e (E k) E'). 

dst_e_capp : dst_e (capp TO Tl ([v:ctriv] E v)) E' 
<- dst_t TO EO 
<- dst_t Tl El 
<- ({v:ctriv} dst_t v (dapp EO El) -> dst_e (E v) E'). 

dst_t_clam : dst_t (clam R) (dtriv_dexp (dlam R')) 
<- (-[x:ctriv} -Cx':dtriv} 

dst_t x (dtriv_dexp x') 
-> dst_r (R x) (R> x')). 
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pCRoot    .    CRoot _> DRoot 

X>CRoot[Afc.e]   =   DCExp[e]. 

pCBxp    .    CExp _> List(DExp) -»• DExp 

VCEntotiXv.e}^   =    let(e'i;ei) = ^CTrivPiK 
inlet^;^0) = ^CTriv[ioKi 

in 2>CEx<>M (&, e'oe'J 

PCExp[Ä*K   =    let (e'; .} = PCTriv[iK 
in e' 

pCTriv    .    CTriv _^ List (DExp) -> (DExp x List (DExp)) 

X>CTrivM£ <*;0 
I?CTriv[Ax.rK   =    (Xx.VCRootlrlO 

PCTriv[t,]<fte'>   =   (e';0 

where "let x = e in 6" abbreviates u([x]b)(e)n and thus denotes an administrative reduction. 

Figure 6: The call-by-value PS transformation formulated as a function and using a stack 

CExp   , 
• he --f e 

,    , ,      CRoot    , 

CTriv    / CExp 
^ h ti ^V e',; ft        ft H *o -^ e0; &        go. eo ei h e ~» e 

CExp    . 
^hi0*iAu.e —fe' 

,        CRoot    , 

- , CTriv t £ h Az.r —^v Az.r'; £ 
.      . ,        CTriv    ,    c ft e h u —>■ e ; c; 

Figure 7: The call-by-value DS transformation formulated as a judgment and using a stack 
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7 Related Work 

The structure of CPS terms has been little investigated. Most authors (e.g., Wand and Oliva [18]) 

implicitly rely on conformant CPS terms to run them on a stack machine. 

In their work on reasoning about CPS programs, Sabry and Felleisen also rely on the unicity of 

continuations parameters in the pure A-calculus [14, 15]. 

In their work on separating stages in the CPS transformation [7], Lawall and Danvy noticed that 

the sequencing order encoded in CPS terms is accounted for by the occurrences of parameters of 

continuations. In his work on the DS transformation [2], Danvy characterized the ordering of Figure 

4, but did not prove it formally. During spring 1993, Danvy and Pfenning carried out the work 

reported here. Later, in her PhD work on the inverseness of the CPS and the DS transformations, 

Lawall independently proved by hand a similar ordering [6, Appendix A.1.1]. 

8 Conclusion and Issues 

We have formalized and proven the occurrences of continuation parameters and of formal param- 

eters of continuations in CPS terms. This new knowledge about continuations parameters in CPS 

terms can enable their more efficient implementation. For example, the transformation of conform- 

ing CPS terms back to direct style can be implemented using a stack to carry out substitutions 

(see Figures 6 and 7). This new formulation also makes it simpler to prove that the CPS and the 

DS transformations are inverses of each other [6] and to automate this proof. 

The implementation in Elfis small but non-trivial. It captures the computational content of the 

translations and the meta-theoretic reasoning in a declarative, yet executable way. The framework 

is built around the notions of substitution and and meta-level function, which leads to a very elegant 

and direct encoding. This representation is unusual in that it requires third-order constants (since it 

abstracts over continuations), thus exemplifying a new technique for representing deductive systems 

in LF interesting in its own right. Since the encoding suggested the proof technique, this paper 

demonstrates, on a small scale, the value of a logical framework as a conceptual tool in the study 

of the theory of programming languages. 

A    Occurrences of Continuations Parameters 

Here we present the implementation of the occurrence condition on continuations parameters in CPS 

terms resulting from a CPS transformation (see Figure 3). Again, we use a third-order judgment. 

occ_r:   croot -> type. %name occ_r KR 
occ_e:   ((ctriv -> cexp)  -> cexp)  -> type. '/.name occ_e KE 
occ_t:   ctriv -> type. '/.name occ_t KT 

'/.mode -occ_r +R 
'/.mode -occ_e +E 
y,mode -occ_t +T 
'/.lex {R E T> 
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occ_r_rlam: occ_r (rlam E) 
<- occ_e E. 

occ_e_capp: occ_e (Ck:ctriv -> cexp] capp TO Tl ([v:ctriv] (E k v))) 

<- occ_t TO 

<- occ_t Tl 

<- ({v:ctriv} 

occ_t v 
-> occ_e ([k:ctriv -> cexp] (E k v))). 

occ_e_cret: occ_e ([k:ctriv -> cexp] k T) 

<- occ_t T. 

occ_t_clam: occ_t (clam R) 
<- ({x:ctriv} 

occ_t x 

-> occ_r (R x)). 

'/.mode -occ_k +K 

'/.lex K 

occ_k: ((ctriv -> cexp) -> (ctriv -> cexp)) -> type, '/.name occ_k KK 

occ_k_k       :   occ_k K 
<- ({t:ctriv} 

occ_t t 
-> occ_e  ([k:ctriv -> cexp]  K k t)). 

Next is the implementation of the proof that the CPS transformation of DS terms yields CPS 

terms that satisfy the occurrence conditions of continuations parameters. 

kproof.r  :   cst_r RE'-> occ_r R'   -> type. 
kproof_e  :   ({k:ctriv -> cexp} cst_e E  (K k)   (E' k)) 

-> occ_k K -> occ_e E'  -> type, 
kproof.t   :   cst_t I T'  -> occ_t T'   -> type. 

'/.mode -kproof_r +CR -KR 
•/.mode -kproof_e +CE +KK -KE 
'/.mode -kproof_t +CT -KT 
'/.lex -CCR CE CT} 

kproof_r_dexp  :  kproof_r  (cst_r_dexp CE)   (occ_r_rlam KE) 
<- kproof_e CE  (occ_k_k  [t:ctriv]   [KT:occ_t t]   occ_e_cret KT) 

KE. 

kproof_e_dapp : kproof.e (Ck:ctriv -> cexp] cst_e_dapp (CEO k) (CE1 k)) 

(occ_k_k KE') KE 
<- (-CtO: ctriv} -CKT0:occ_t tO} 

kproof_e (Ck] CEi k tO) 
(occ_k_k [ti:ctriv] [KTl:occ_t tl] 

occ_e_capp KE' KT1 KTO) 

(KEi tO KTO)) 
<- kproof_e CEO (occ_k_k KEI) KE. 
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kproof_e_dtriv  :  kproof_e  ([k:ctriv -> cexp]   cst_e_dtriv CT)   (occ_k_k KE') 
(KE'  T'  KT) 
<- kproof.t CT KT. 

kproof_t_dlam :  kproof_t  (cst_t_dlam CR)   (occ_t_clam KR) 
<-  ({x:dtriv> {x':ctriv} 

{Cx:   cst_t x x'> {Kx'iocc.t x'} 
kproof_t Cx Kx'   -> kproof_r (CR x x'   Cx)   (KR x'  Kx')). 
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